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Abstract: The present paper considers all the unit-speed curve segments between two fixed 
points p and q in R3. It obtain a condition for the critical curve of the problem of minimizing 
the energy of the velocity vector field among the family of all curves from p to q. It show that 
the condition can be expressed in terms of the curvature functions.  
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Introduction 
The volume of unit vector fields has been studied by (Gluck and Ziller, 1986, Johnson, 1988, Higuchi, Kay and 
Wood, 2001) among other scientists. They define the volume of unit vector field  as the volume of the 
submanifold of the unit tangent bundle defined by . In (Wood, 1997), the energy of a unit vector field on a 
Riemannian manifold  is defined as the energy of the mapping  : → 1 , where the unit tangent bundle 

 is equipped with the restriction of the Sasaki metric on . 
 
Generally, every geometric problem about curves can be solved using the curves'Frenet vectors field. Therefore, 
in (Altın, 2011), we focus on the curve  instead of the manifold . For a given curve , with a pair of 
parametric unit speeds ,  in a space Rn, on which we take a fixed point ∈ , we denote Frenet frames at the 
points  and  by , … ,  and , … ,  respectively. We calculate the 
energy of the Frenet vectors fields as well as the angle between the vectors  and , where 1

. We observed that both energy and angle depend on the curvature functions of the curve . 
 
In this paper, we choose two points p and q in R3. We obtain a condition for the critical curve of the problem of 
minimizing the energy of the velocity vector field among the family of all curves from p to q. We also prove that 
this condition can be expressed in terms of the curvature functions. For example the condition is realized for curves 
whose curvature functions is constant. An example is also provided to show that the curvature of the curve is 
linear. 
 
Definition 1.1  A curve segment is the portion of a curve defined in a closed interval, (O’Neill 1966). 
 
Theorem 1.1.(Frenet formulas) If : →  is a unit speed curve with curvature 0 and torsion τ, then 

, 
, 

 
Where , ,  is the Frenet frame on α (O’Neill 1966). 
 
Proposition 1.1 The connection map : →  verifies the following conditions. 
1 	 ∘ ∘  and ∘ ∘ ,  where : →  is the tangent bundle projection and 
: →  is the bundle projection. 

2) For ∈  and a section : → , we have  

                                      .  

Where  is the Levi-Civita covariant derivative (Chacόn , Naveira and Weston,2001). 

Definition 1.2. For ,	 ∈  define 

                            ,	 , , .	      (1) 
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This gives a Riemannian metric on . Recall that is called the Sasaki metric. The metric  makes the 
projection : →  a Riemannian submersion (Chacόn , Naveira and Weston,2001). 

Definition 1.3. The energy of a differentiable map : M, , 	 → ,  between Riemannian manifolds is 
given	 by 

                     	 ∑ ,       (2) 

 where  is the canonical volume form in  and  is a local basis of the tangent space (Chacόn , Naveira and 
Weston,2001 and Wood, 1997). 

A Condition on Minimizing Energy of the Velocity Vector Field of a Curve in R3 

The following theorem characterizes a critical point of the energy of the velocity vector field of a curve in R3 

Theorem 2.1. Let α be unit speed curve in R3 and (a) = p, α(b) = q. Let us consider the collection of all curves 
segments from p to q in R3 .. If the energy of the velocity vector of α along one segment is less than that along any 
other segment, then the following equation is valid 

                                                    0          (3)  

where κ is the curvature function and λ is the real-valued function n [a, b]. 
 
Proof. Let : →  be a unit speed curve in R3 and [a, b]⊂ I, α(a)= p, α(b) = q. There exists a real-valued 
function λ on [a, b], λ(s)=(s-a)(b-s), λ(a)=λ(b)=0 and λ(s) 0 for all s∈(a, b). Let {T, N, B} be the Frenet frame 
field on α and 
 
                        , , 	 ,	 	 	 	 : . → .   (4) 
 
Let the collection of curves be 
 
             	 	 , 	 , 	 	  for sufficiently small k. (5) 
 
For k=0, (s)=α(s) and  λ(a)=λ(b)=0, we have (a)=	 (b)=0 .	 1 3 and 	 	 , 	 . 
These results show that 	  is the curve segment from p to q.  
 
Assume this collection 	 α(s, k) for all curves. The expression for the energy of the vector field  of 
	  from p to q becomes ( ). 
 
Now, let  be the tangent bundle. So we have : → , where ∪ ∈ , 	  and 

 denotes generated by .  Let :	 →  be the bundle projection. By using equation (2) we 

calculate the energy of  as  
 

                       	 , , ,     (6) 

 
where ds  is the differential arc length. From (1) we have 
 

, )=	 	 , 	 , . 
 
Since  is a section, we have ∘ ∘ . By Proposition 1.1, we also have 
that 
 

                          , 

giving 
 
                      , ) =	 , + ′ , ′ . 
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Using these results in (6) we get 
                          

                           	 , 	 ,      (7) 

 

Where 
,

(s, k); , s, k , s, k , Suppose that  is such a minimized 

energy for any "k"  α(s, k)  with α(s,0)=α(s).  We calculate    and evaluate at k=0. If   is a 

minimizing energy, then k=0 should be a critical point of . Supposing that  | 	 = 	 = 0, 

from (7) we obtain: 
 

	 [	 	 , 	 , 	 	 	 , 	 , . 

 

Since , 	 1 we have 	 , 0 and we get 

 

                     	 	 	 , 	 	 , .   (8) 

We can write 
 

                      , 	  , 	 	 ,  . 

 
Thus, we can deduce, 
 

                      , 	 	 , 	 ,  .     (9) 

 
Substituting (9) in (8), for, k=0, 
 

                 , 0 , , 0 	 , 0 ,	 	 	 , 0 	 ds 

and 
 

                 , 0 , , 0 |  - 	 , 0 ,	 	 	 , 0 	 ds  (10) 

 
From (4) and (5), we obtain, 
 

                               (s, k)=λ(s)	 (s)      (11) 

and 

                               (s, 0)=	 =	 (s, 0)     (12) 

 
Now we calculate the partial derivatives of (12) with respect to s and k; using Frenet formulas, we get 
 

                             , 0 , 0 ′(s)=    (13) 

and 
 

                             , 	 (s, k)=	 (s, k). 

From (11), we have 

                            	 , | 	 , 0 .  (14) 

 
It follows from (13) and (14) that 

, 0 ,	 	 	 , 0 	 .	  

 
Considering the candidate function 0, we get: 
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                          , 0 ,	 	 	 , 0 | 	 =0 (15) 

From (13), we get 

                           , 0   (16) 

 
Therefore, (14) and (16) gives 
 

, 0 , , 0 	 3 . (17) 

 
Substituting (15) and (17) in (10), yields 
 

                           | 	 = 3 =0 

and 

                           	 | 3 =0 

 
We are looking the candidate function	 0, which given | 0 and 
 

                            3 =0. 

 
This completes the proof of the theorem. Any path that minimizes the energy function 	 must satisfy 
equation (3). Note that the condition is necessary, but not sufficient; not every function that satisfies (3) will 
produce minimal energy. If α is geodesic then it will satisfy equation (3). The following is provided as an example. 
This 
example will also demonstrate that the curvature of the curve is linear, given the aforementioned conditions. 
 
Example. Let : → ,  [0,1]⊂ I, α(0)= p, α(1) = q. If we can choose : 0, 1 → , λ(s)=s(1-s), λ(0)=0, 
λ(1)=0 and  λ(s) 0 for all s∈(0, 1). Let the curvature function of α be 	 where c and d are real 
numbers. Using equation (3), we have 
 

2 0. 

If  c=0  then κ constant, or c=-2d. 
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