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Abstract: In this work, we construct polycyclic codes over finite fields by using linear algebraic 
methods. After the construction, we perform an exhaustive search by using polycyclic codes to 
obtain MDS codes over finite fields which have many applications in cryptography. The 
computer search results are presented at the end of the paper. 
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Introduction 
Polycyclic codes are the generalization of cyclic and constacyclic codes and were studied in (William, 1972) for 
the first time. In (Radkova, 2009) Radkova et al. studied the cyclic and constacyclic codes from a linear algebraic 
point of view. In this work, we construct polycyclic codes over finite fields by using same methods.Then we 
perform an exhaustive search by using polycyclic codes to obtain MDS codes over finite fields which have many 
applications in cryptography. The computer search results are presented at the end of the paper. 
 
Polycyclic Codes 
Polycyclic codes are the generalization of cyclic and constacyclic codes. We give the definition of polycyclic code. 
 
Definition 2.1:  A linear code C  with length n  over a finite field F  is called polycyclic code induced by 

the polynomial 1
0 1 1( ) [ ]n

nv x v v x v x F x
      such that if 0 1 1( , , , )nc c c c C  then its 

v vector  shift 0 1 2 1 0 1 1(0, , , , ) ( , , , ) .n n nc c c c v v v C      

 

Let ( )F GF q  and let nF  be the n-dimensiomal vector space over F  with standard basis 

1 2(1,0, ,0), (0,1, ,0), , (0,0, , ).ne e e n         

Then polycyclic shift with respect to a vector v  is the following transformation: 
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Then it has the following matrix 
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with respect to tstansard basis. Note that the characteristic polynomial of vT  is ( ) ( )nf x x v x  .  

 

Let ( , ) 1gcd n q  . Assume that 1 2( ) ( ) ( ) ( ) ( )n
tf x x v x f x f x f x     be the factorization of ( )f x  

into monic irreducible factors over F . Cayley-Hamilton Theorem states that the matrix vT  satisfies ( ) 0vf T 
. 
 
Now we consider the set of homogeneous equations 
 

The Online Journal of Science and Technology - July 2017 Volume 7, Issue 3

www.tojsat.net Copyright © The Online Journal of Science and Technology 55



( ) 0, n
i vf T x x F   for 1, , .i t   

 

Let iU  be the solution space of ( ) 0, n
i vf T x x F  .  We denote ( ).i i vU Kerf   Then each iU  is a 

subspace of nF . 
 
Then we have the following theorem: 
 

Theorem 2.2: The following statements hold for the subspaces iU  of nF : 

(1) iU  is  v -invariant subspace of nF ;  

(2) If W  is a  v -invariant subspace of nF  and i iW W U   for 1, 2, ,i t  , then iW  is free v  -

invariant and 1 tW W W   ; 

(3) 1
n

tF U U  ;  

(4) ( ) ( ) :F i i idim U deg f k  ; 

(5) ( )if x  is the minimal polynomial of v  over iU ; 

(6) iU  is the minimal v -invariant subspace of nF ; 

(7) For any subspace U  of nF , U  is the direct sum of some of minimal v -invariant subspaces iU  of nF
. 
 
Then the following theorem is clear from the definition: 
 
Theorem 2.3: A linear code C  with length n  over F  is a polycyclic code with respect to some 

( ) [ ]v x F x  if and only if C  is a  v -invariant subspace of .nF  

 
Theorem 2.4: Let C  be a linear polycyclic code with length n  over F  with respect to some ( ) [ ].v x F x
Then the  following statements hold: 

(1) 
1 2 si i iC U U U     for some minimal v -invariant subspaces of nR  and 

1
: ( ) ,

si ik dim C k k    where ( ),
j ji ik dim U  1, ,j s  ;  

(2) 
1

( ) ( ) ( )
si ih x f x f x   is the minimal polynomial of v  over C ;  

(3) ( ( ))dim h T n k  ;\ 

(4) c C  if and only if ( ) 0.h T c   

 
Then we have the following result which explains how we construct pollcyclic codes over finite fields. 
 

Corollary 2.5: ( )vH h T  is a parity check matrix for the code C  and ( ( ))t
vG g T  is a generator matrix 

for the code C  where ( ) ( ) ( ) ( )nx v x f x g x h x   . In this case, ( )g x  is said to be the generating 

polynomial of the polycyclic code C . 

 
MDS Codes 
In this section we briefly explain the MDS codes and its applications in cryptography. The reader who wants more 
information about this topic may consult (Augot, 2014). 
 

Definition 3.1: Let C  be linear code over qF  with parameters [n,k,d]. C is said to be a MDS code if 

1d n k    is satisfied. 
 

Definition 3.2: A matrix M is MDS if its concatenation with the identity matrix : [ | ]M kG I M  yields a 

generating matrix of an MDS code C. 
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MDS matrices are used in linear diffusion layers in  cryptography. A linear diffusion layer of a block cipher is 

defined by an invertible matrix of size k k  over qF . It takes n
qx F  as a input and yields k

qy F  as an 

output with .y x M    

 
The security of a diffusion layer is measured by its differential branch number and the linear branch number. The 
larger the two branch numbers are, the stronger a diffusion layer is. The diffusion layers with the optimal branch 
numbers are called being maximum distance separable. Optimal linear diffusion can thus obtained by using codes 
with largest possible minimal distance, namely MDS codes. 
 
Several different techniques have been studied to obtain  MDS matrices, a well known example being circulant 
matrices  as used in the AES (Daemen, 1012) or FOX (Junod, 2004). Recently a new construction has been 
proposed: the so-called recursive MDS matrices,  that were for example used in  LED (Guo, 2011). These 
matrices have the property that they can be expressed as a power of a companion matrix C. 
 

Definition 3.3: The companion matrix of monic polynomial 1
0 1 1( ) n n

nc x c c x c x x
     is defined as 

the square matrix  
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Recently Augot et al. in [4] propose a fast algorithm which yields k k  square matrices whose thk   power of 
its companion matrices are MDS matrices. They obtain recursive MDS matrices by using shortened BCH codes. 
 
The Link Between Polycyclic Codes and Recursive MDS Matrices 
The matrix of a linear transformation of a polycyclic shift with respect to a polynomial  

1
0 1 1( ) n

nv x v v x v x 
    and the companion matrix of a monic polynomial ( )nx v x  same and as the 

following: 
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There is an obvious link between polycyclic codes and recursive MDS matrices. Augot et al.'s algorithm already 
finds the polynomials whose companion matrices are recursive MDS matrices. So we perform an algorithm as 
explained below: 

1. Choose a field 
2sF  and a code length n . 

2. Take a polynomial ( )v x  of degree 1n  form 
2

[ ]sF x  from the previous algorithm results (Augot's 

Algorithm). 
3.  Compute the polycyclic codes with respect to ( )v x  using the theory we just derive. 

4.  Decide if the polycyclic codes we obtain MDS code or not. 
 
We run this algorithm by using computer algebra system MAGMA (Bosma, 1997) and we have seen that most of 
the codes we obtain is indeed MDS. We think it is worth to study on this topic deeper and more theoretical point 
of view. We present the result in a table. 

The Online Journal of Science and Technology - July 2017 Volume 7, Issue 3

www.tojsat.net Copyright © The Online Journal of Science and Technology 57



 
 

Table 1: The Number of MDS and non-MDS Codes 
 

s n Number of MDS Codes Number of non-MDS Codes 
4 4 256 0 
4 6 384 0 
5 10 4700 0 
5 12 5610 30 
6 6 7650 0 
6 10 12720 0 
6 14 15996 48 
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